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Review of Galact ic  and Solar  Cosmic Rays 

F. 3. McDonald 

Goddard Space F l igh t  Center 
Greenbelt, Maryland 

In t roduct ion  

The energe t ic  p a r t i c l e  population i n  in te rp lane tary  space extends from 

"so lar  wind" protons i n  the kev range to  u l t r a - r e l a t i v i s t i c  p a r t i c l e s  assoc ia ted  

with the  g a l a c t i c  cosmic rays.  The population i n  t h i s  region of space is  highly 

var iab le .  Not only a r e  the g a l a c t i c  cosmic rays s t rongly  modulated by the  s o l a r  

wind, bu t  there  a r e  frequent g rea t  in jec t ions  of s o l a r  cosmic rays t h a t  give 

rise t o  p a r t i c l e  f luxes an order  of magnitude g r e a t e r  than g a l a c t i c  cosmic rays.  

In te rspersed  with these events a r e  small recur ren t  streams associated with 

p a r t i c u l a r l y  ac t ive  s o l a r  regions and producing streams of protons i n  the  1-10 Mev 

range. This  paper attempts t o  summarize some s a l i e n t  f ea tu re s  of both the  g a l a c t i c  

and s o l a r  cosmic rays.  

Galac t ic  Cosmic Rays 

The g a l a c t i c  cosmic rays were f i r s t  discovered some 50 years  ago, bu t  even 

now t h e i r  study i s  one of the important problems i n  physics and astrophysics .  

Following Warld War I, u n t i l  the  late 1940's, cosmic ray  s tud ie s  w e r e  near ly  

synonymous with high energy physics.  

pr imaries  with the  nuc le i  

and nuclear  cascades down through the  atmosphere, furnished the  p a r t i c l e  beam 

f o r  discovering the  pos i t i ve ly  charged e l ec t ron  (pos i t ron) ,  the  p and IT meson, 

and the  e a r l y  heavy mesons o r  '*strange pa r t i c l e s " .  

The nuclear  i n t e rac t ions  of the high energy 

of the upper atmosphere, and t h e  r e s u l t i n g  e l e c t r o n  

Since the  cosmic rays i n t e r a c t  
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nuc le i ,  ranging from hydrogen through i ron ,  i n  a nuclear  emulsion. A s  one 

progresses  towards the  heavier  nuc le i  the s t rong  coulomb i n t e r a c t i o n  between 

the  s t r ipped  nucleus and the  e l ec t rons  of the  elements i n  the  emulsion produces 

w i t h  a i r  n u c l e i ,  it i s  c lear ly  necessary t o  g e t  beyond the  e a r t h ' s  atmosphere t o  

obta in  quan t i t a t ive  s tud ie s  of most of the  p rope r t i e s  of t he  primary beam. With 

the development of l a r g e  Skyhook bal loons and, more importantly,  t h e  advent of 

e a r t h  s a t e l l i t e s  and probes,  i t  has been poss ib l e  t o  ob ta in  f a r  more d e f i n i t i v e  

information on the na ture  of the  primary r ad ia t ion .  Strongly coupled with t h i s  

i s  the discovery of g r e a t  d i s c r e t e  r ad io  sources emi t t ing  polar ized  r ad io  s i g n a l s  

which can apparently only be  explained i n  terms of synchrotron r a d i a t i o n  from 

highly r e l a t i v i s t i c  e l ec t rons .  This important l i n k  t o  as t rophys ics  i s  f u r t h e r  

emphasized when we r e a l i z e  t h a t  the  energy dens i ty  of the  primary r a d i a t i o n  i s  

about 1 e l e c t r o n  v o l t  pe r  cubic cent imeter .  This i s  comparable t o  the  energy 

dens i ty  of s t a r l i g h t ,  t o  the energy contained i n  the  g a l a c t i c  magnetic f i e l d s ,  

and t o  the  energy due t o  turbulence through the galaxy. Because of t h e  very 

g rea t  energy of the p a r t i c l e s ,  we assume they cannot be contained i n  our s o l a r  

system and are  therefore  generated i n  the  galaxy, poss ib ly  by a v a r i e t y  of sources .  

When w e  observe them near the e a r t h ' s  o r b i t  they have a l ready  undergone t h r e e  

bas ic  processes:  (1) i n i t i a l  acce le ra t ion  followed by d i f f u s i o n  through the 

galaxy, ( 2 )  poss ib le  pos t -acce lera t ion ,  and f i n a l l y ,  (3 )  modulation by the  s o l a r  

wind. However, i t  i s  more convenient t o  order  t he  experimental  information i n  the  
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d e l t a  rays  o r  "knock-on" e l ec t rons ,  which provide one means of charge i d e n t i f i c a -  

t ion .  

i n  Tables 1 and 2. The s t r i k i n g  fea ture  he re  i s  the  overabundance of elements 

i n  the  range g r e a t e r  than carbon and the presence of l i th ium,  beryl l ium and boron. 

This suggests  two things:  F i r s t ,  t h a t  the i n i t i a l  i n j e c t i o n  and acce le ra t ion  of 

The measurements t o  da t e  on t h e  chemical abundances a r e  summarized2y3 

cosmic r ays  occur i n  a region r i c h  i n  heavy nucle i ;  second, t h a t  the l i g h t  n u c l e i  

L i ,  B e ,  B a r e  formed by fragmentation of these heavy n u c l e i  i n  nuclear  c o l l i s i o n s  

with i n t e r s t e l l a r  hydrogen. 

f o r  t h e  production of L i ,  B e  and B i n  the breakup of heavy nuc le i ,  and t h i s  makes 

We know reasonably w e l l 3  t he  fragmentation parameters 

i t  poss ib l e  t o  es t imate  the average amount of ma te r i a l  t raversed by the cosmic 

4 2 rays.  The b e s t  cur ren t  es t imate  is  2.5 gmsjcm . Table 2 shows f u r t h e r  d e t a i l s  

of the  chemical composition; i t  revea ls  t h a t  t he  n u c l e i  of even Z tend t o  pre-  

dominate over those of odd Z. There also appears t o  be a dear th  of elements i n  

the reg ion  j u s t  before  calcium. Recent s t u d i e s  have indicated t h a t  e l ec t rons  i n  

the energy i n t e r v a l  g r e a t e r  than 100 Mev c o n s t i t u t e  approximately 1% of the  primary 

Energy Di s t r ibu t ion  

The next  d i s t inguish ing  f ea tu re  of t he  g a l a c t i c  r a d i a t i o n  i s  the energy 

7 spectrum. Observations now extend from 10 t o  10'' e l e c t r o n  v o l t s .  P a r t i c l e s  

7 with  t o t a l  energies  of approximately lo2' e l e c t r o n  v o l t s  have been observed . 
Figure 2 shows the  i n t e g r a l  f l u x  values over t h e  complete range. I n  the region 

up t o  approximately 20 Bev da ta  have been obtained8" by d i r e c t  observat ions 

with satel l i tes ,  space probes, o r  balloons. The intermediate  region around 10 

EV da ta  have been obtained by the  study of high energy i n t e r a c t i o n s  underground , 

and the  h ighes t  energy (> - 1015 EV) data are based on s t u d i e s  of ex tens ive  a i r  

1 2  

1 0 , l l .  
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showers l 2 2 l 3 , l 4 .  The b e s t  es t imate  now i s  t h a t  i f  we represent  the  i n t e g r a l  

spec t r a  i n  the  form 

2 
JGE) = par t ic les lcm -sec-s te r  with k i n e t i c  energy >E(Bev) 

(l+E)Y 

y changes from 1.5 a t  the  lowest energy i n t e r v a l  t o  a value i n  the  range 1.7-2.17 

a t  the  h ighes t .  

assumes a smaller value.  The b e s t  experimental  evidence a t  p resent  i nd ica t e s  

t h a t  i n  the  range lo9  t o  1015 EV the  charge composition is  not a funct ion of 

energy. A s  one goes t o  much lower energ ies ,  it is  expected t h a t  the  energy lo s s  

i n  the  t r a v e r s a l  of the  2.5 gms/cm2 of hydrogen w i l l  p lay an important r o l e  and 

one should then see  d i f f e r e n t  energy spec t ra  i n  t h i s  region f o r  d i f f e r e n t  components. 

Figure 3 shows the l o w  energy d i f f e r e n t i a l  s p e c t r a  f o r  protons extending down t o  

approximately 10 MeV. 

and presumably represent  condi t ions j u s t  p r i o r  t o  s o l a r  minimum. It i s  observed 

tha t  the low energy po r t ion  of the  spectrum i s  s t eep ly  f a l l i n g  a s  a func t ion  of 

energy. I n  the  region 10-100 Mev these  measurements w e r e  made aboard the  IMP-1 

spacecraf t .  

Recent da t a  tend t o  suggest t h a t  a t  even higher  energies  y poss ib ly  

These measurements 15-19 w e r e  taken i n  mid 1963 and 1964 

S p a t i a l  Dis t r ibu t ion  

It appears t h a t  t he  primary cosmic r a d i a t i o n  is  e s s e n t i a l l y  i so t rop ic  over 

the  c e l e s t i a l  sphere. The amplitude of anisotropy 2oJ21 i s  probably not g r e a t e r  

than 1% i n  the region up t o  approximately 1015 EV. A t  medium energies  (g rea t e r  

than - 500 MeV) there  may be small  an i so t rop ie s  assoc ia ted  with the  s o l a r  modu- 

l a t i o n .  Studies i n  the  low energy range (10 Mev t o  approximately 300 M e V ,  f o r  

example, have not been made. 
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Solar  Cosmic Rays 

During the  per iod 1956-1963 there  were a t  l e a s t  64 occasions when the  sun 

acce lera ted  nuc le i  t o  energies  g rea t e r  than a few Mev and these  p a r t i c l e s  w e r e  

subsequently detected i n  the  v i c i n i t y  of the ear th .  These s o l a r  cosmic ray 

events a r e  of fundamental s c i e n t i f i c  importance. Not only should they provide 

.' information on s o l a r  processes,  but t h e i r  propagation c h a r a c t e r i s t i c s  should 

give new c lues  t o  the  magnetic f i e l d  configurat ions i n  the  v i c i n i t y  of t he  sun 

and i n  in t e rp l ane ta ry  space. These s o l a r  p a r t i c l e  ou tburs t s  a l s o  pose important 

cons idera t ions  f o r  manned space t r a v e l  i n  such programs as  the forthcoming Apollo 

f l igh ts .  

occurrence, energy and charge spec t r a ,  and propagation c h a r a c t e r i s t i c s  w i l l  be 

summarized here.  

Some of the  pe r t inen t  f ea tu re s  of these events - s i z e  and frequency of 

Frequency and Size  Di s t r ibu t ion  

The s o l a r  production of cosmic rays was f i r s t  observed by Forbush22 i n  

1942 by means of sea  l e v e l  i on iza t ion  chambers. Neutron monitors,  introduced 

i n  1949, of fe red  g r e a t e r  s e n s i t i v i t y  but  s t i l l  responded pr imar i ly  t o  p a r t i c l e s  

with k i n e t i c  energies  >1BEV a t  the top of  the atmosphere. 

of polar-cap absorpt ion events with so l a r  p a r t i c l e  emission by Bailey23 provided 

a means of extending the  observations t o  much lower p a r t i c l e  energies .  

24 method was extended by Reid and Col l ins  . It is  based on the a t t enua t ion  of 

g a l a c t i c  r ad io  noise  due t o  the enhanced ion iza t ion  produced by these events i n  

The i d e n t i f i c a t i o n  

This 

. t he  v i c i n i t y  of t he  polar  D layer .  F ina l ly ,  t he  d i r e c t  p a r t i c l e  observations 

by bal loon,  rocket ,  and s a t e l l i t e  borne instrumentation have g r e a t l y  extended 

our knowledge of these  events.  By using a l l  these  methods25 some 64 events 
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have been detected over the  i n t e r v a l  around s o l a r  maximum (Table 3 ) .  

There were probably add i t iona l  s m a l l  events  which w e r e  no t  de tec ted .  

Because of the  uncer ta in ty  i n  the  d e t e c t i o n  of s m a l l  events ,  i t  seems 

worthwhile t o  introduce a threshold and cons ider  only those events  which 

a r e  g r e a t e r  than t h i s  threshold.  The a r b i t r a r i l y  chosen l i m i t  i s  those 

with a minimum in t eg ra t ed  i n t e n s i t y  of 10 6 par t ic les /cm2 a t  energ ies  1 30 

Mev observed a t  the ea r th .  (This i s  comparable t o  the  in t eg ra t ed  i n t e n s i t y  

of the g a l a c t i c  cosmic r a d i a t i o n  f o r  one week.) This ,  then, reduces the  t o t a l  

number of events t o  30 over the  s i x  year  per iod.  The in t eg ra t ed  i n t e n s i t i e s  

24 of these  events a r e  summarized i n  Table 4 . 
The November 12 and 15, 1960 events  c e r t a i n l y  are two of t h e  l a r g e s t  events  

ever recorded. Since these  two events  w e r e  s tud ied  i n  d e t a i l  by a number of 

rocket ,  balloon and s a t e l l i t e  observat ions combined wi th  numerous riometer and 

neutron monitor measurements, they are by f a r  t h e  b e s t  documented of t he  g r e a t  

events .  

It i s  t o  be understood t h a t  the  second event follows immediately a f t e r  t h e  f i r s t .  

I n  the  12 November event t he re  are two maxima displayed i n  the  > 500 Mev region. 

The second maximum i s  assoc ia ted  wi th  the  passage of a plasma cloud t h a t  a l s o  

generated a large magnetic storm and produced a Forbush decrease (which can be 

descr ibed a s  a depression o r  sweeping out  of  the  g a l a c t i c  cosmic r ays ) .  

The time h i s t o r y  of these  two events26 i s  shown i n  Figures  4 and 5. 

The event on 15 November 1960 w a s  marked by s t rong  anisotropy during the  

f i r s t  hourz7. 

r egu la r  decay (Figure 5 ) .  

maximum 20 hours a f t e r  the  f l a r e .  Again i n  Figure 5 the  i n t e g r a l  time h i s t o r y  

The high i n t e n s i t y  phase has  a very rap id  r ise  followed by a 

The i n t e g r a l  f l u x  g r e a t e r  than 20 Mev reached a 
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a t  th ree  energy l e v e l s  i s  shown. 

Charge Composition 

The charge composition of the cosmic r ad ia t ion  w a s  f i r s t  s tud ied  ex tens ive ly  

. They observed a proton/medium nuc le i  (Medium n u c l e i  = 
28 , 29 by F i c h t e l  e t  a1 

carbon, n i t rogen  and oxygen) r a t i o  of -2000 i n  the  energy range 42.5 Mev t o  

95 MeV;  a proton/helium r a t i o  of 33 i n  the  same energy i n t e r v a l ,  and a helium/ 

medium r a t i o  of 60. 

of importance from the  manned space t r a v e l  viewpoint, nevertheless  the f a c t  t h a t  

the  sun acce le ra t e s  these  nuc le i  t o  moderate energies  is of enormous as t rophys ica l  

s ign i f i cance .  The charge spectrum of Biswas, F i c h t e l  and Guss i s  given i n  Table 5 .  

A l l  values  have been normalized t o  a base of oxygen = 10. 

son i s  the  r e l a t i v e  abundance i n  the  s o l a r  atmosphere and i n  the  g a l a c t i c  cosmic 

rays.  It is seen that the s o l a r  cosmic rays agree wel l  wi th  the r e l a t i v e  abundance 

i n  the  s o l a r  atmosphere and d i f f e r  s i g n i f i c a n t l y  i n  seve ra l  a reas  from t h a t  observed 

i n  the  g a l a c t i c  cosmic rays.  

' 

While these s m a l l  abundances imply t h a t  heavy n u c l e i  are no t  

Also shown f o r  compari- 

Energy Spectrum of the  Solar Cosmic Rays 

It is  important t o  determine the  s p e c t r a l  c h a r a c t e r i s t i c s  of the  s o l a r  

cosmic rays.  

s m a l l  dynamic range i n  energy f o r  f ixed n. 

represent  the  d i f f e r e n t i a l  spectrum of the s o l a r  p a r t i c l e s  i n  the  form dJ/dE = 

To d a t e  the  methods i t  has been poss ib l e  t o  devise  cover only a 

The general  p r a c t i c e  has been t o  

, K/En where E i s  the k i n e t i c  energy and n v a r i e s  over the range 1-6. I n  

order  t o  apply t h i s  formula over an extended dynamic range it is  necessary t o  

vary n as a func t ion  of energy, i .e.,  t o  have n decrease as  the  energy decreases. 

The measurements of alphas and heavy nuclei  s t rong ly  suggest t h a t  both charge 
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28 components display the  same r i g i d i t y  spectrum . It is  most convenient t o  th ink  

of r i g i d i t y  simply as momentum pe r  u n i t  charge. 

posed a representa t ion  i n  t h e  form of exponent ia l  r i g i d i t y  as given by the  formula 

F r e i e r  and Webber3O have pro- 

- -  d J  dJo ( t )  - 
dP dP 

where Po i s  a c h a r a c t e r i s t i c  r i g i d i t y  which is  a func t ion  of time, dJo/dP a l s o  is 

a func t ion  of time and P is  the p a r t i c l e  r i g i d i t y .  This  has  produced a remarkable 

s i m p l i f i c a t i o n  of the  spec t r a  of the  s o l a r  cosmic rays as shown i n  Figure 6. It 

i s  s t i l l  debatable  how low i n  energy a r i g i d i t y  r ep resen ta t ion  can be extended. 

I n  most events  i t  is not  appl icable  i n  the  region below 50-30 M e V ;  below 30 Mev 

i t  p r e d i c t s  an i n t e n s i t y  which i s  too low compared t o  the  observat ions.  It 

does, however, appear t o  be w e l l  followed i n  the  h igher  energy regions.  It has 

I 
l 

I been observed tha t  both Po and Jo are funct ions of time. These a r e  shown f o r  t he  
I 

I November 1960 events i n  Figure 7.  The conventional r ep resen ta t ion  f o r  these  

events  has  been discussed i n  a previous s e c t i o n  of t h i s  paper. 

simply t o  decrease as  a func t ion  of time, Jo d i sp lays  a complex behavior which is  

While Po appears 

I probably s t rongly  dependent on the  in t e rp l ane ta ry  electromagnet ic  condi t ions near  
~ 

the  e a r t h ' s  o rb i t .  For example, a t  the  time of the  November 15 cosmic ray f l a r e  

a s o l a r  plasma f r o n t  w a s  enroute  t o  the  e a r t h  from a previous f l a r e  i n  the  same 

s o l a r  region. 

of s o l a r  p a r t i c l e s  increased by an o rde r  of magnitude and the  spectrum steepened 

l 

Following the sudden commencement on November 15 the  t o t a l  i n t e n s i t y  

appropr ia te ly .  

similar behavior i s  noted f o r  the  plasma cloud a s soc ia t ed  with the 1 2  November 

event.  It is important t o  note  t h a t  t h i s  technique is  not  appl icable  f o r  the  

onset  o r  beginning of the s o l a r  f l a r e  and app l i e s  only when a reasonable equi l ibr ium 

This i s  r e f l e c t e d  i n  the s t rong increase  i n  Jo a t  t h a t  time. A 
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has been es tab l i shed  following f l a r e  maximum. 

Propagat ion  Character is t i c s  

The d a t a  obtained from the s a t e l l i t e s  and space probes have made it poss ib le  

t o  observe i n  d e t a i l  the  onset  and decay phase f o r  a number of s o l a r  proton events.  

One example of a g rea t  v a r i e t y  of da t a  that has been co l l ec t ed  by a number of 

observers i s  the 85 Mev da ta  from Explorers X I 1  and XIV which is  shown in  Figure 8. 

The d e t a i l e d  energy spectrum f o r  t he  28 September 1961 event is shown a s  a func t ion  

of t h ~ e ~ l ’ ~ ~ ( F i g u r e  9). This p a r t i c u l a r  event can be charac te r ized  a s  medium 

s ized  but  contains  severa l  s t r i k i n g  features .  For example, i n  Figure 10 the  

behavior of the  i n t e n s i t i e s  of the  various d i f f e r e n t i a l  components f o r  t h i s  event 

has been p l o t t e d  not  as a func t ion  of time but simply as a function of d i s t ance  

t r ave l l ed .  Distance t r ave l l ed  is simply t h e  product of p a r t i c l e  ve loc i ty  and the 

time from the  f l a r e .  The i n t e n s i t y  curves of the  var ious components have then 

been v e r t i c a l l y  scaled t o  give the  b e s t  f i t  t o  a common curve. It is then noted 

t h a t  a l l  components l i e  very c lose ly  on a common curve. This has been in t e rp re t ed  

by the  authors  a s  a measure of the probabi l i ty  t h a t  a p a r t i c l e  should t r a v e l  a 

given d i s t ance  before  reaching the ear th  from the  sun. 

The f a c t  t h a t  they f a l l  on a common curve shows that p a r t i c l e s  of a l l  energ ies  

t r a v e l  a given path length with equal p robab i l i t i e s .  

most p a r t i c l e s  i s  

The d i s t ance  t r a v e l l e d  by 

an order  of magnitude l a rge r  than one a s t r o n o k c a l  u n i t .  

. This ind ica t e s  t h a t  propagation involves an important degree of s ca t t e r ing .  

Furthermore, i n  the  energy region studied, i.e., below l b e v ,  t he  degree of 

s c a t t e r i n g  is  not  a funct ion of energy. This suggests t h a t  the mode of propa- 

ga t ion  is a d i f fus ion - l ike  process.  A number of o the r  observers 323 34 have been 
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33 ab le  t o  f i t  so l a r  proton da ta  to  a s i m p l e  d i f f u s i o n  process as  represented by 

MR 
exp - - 

4I- 

N 

2n I- 

Y 

112 312 
LJJL(M,t) = 

where N = p a r t i c l e / u n i t  energy/sol id  angle  a t  source measured a t  T = O ,  

I R = distance from source,  and T = Q t  where Q = w h / 3 ,  w= p a r t i c l e  ve loc i ty ,  

A = d i f fus ion  mean f r e e  path.  

It has a l s o  general ly  been necessary t o  add a boundary t o  expla in  the  observed 

change from a power l a w  t o  exponent ia l  da ta .  The present  simple r ep resen ta t ion  

31 of  ve loc i ty  dependence makes i t  poss ib l e  t o  ex t r apo la t e  back t o  zero d i s t ance  , 

and t h i s  ex t rapola t ion  makes i t  poss ib l e  t o  determine t h e  source spectrum. 

a re  shown f o r  a number of events  i n  Figure 11. The source spec t r a  appear t o  be 

w e l l  represented by power l a w s  i n  k i n e t i c  energy. This i s  not  i n  disagreement 

wi th  the representa t ion  of t he  spec t r a  i n  the form of exponent ia l  r i g i d i t y .  I n  

the  l a t t e r  case one i s  dea l ing  wi th  p a r t i c l e s  a f t e r  they have propagated through 

in t e rp l ane ta ry  space, while  t he  source spec t r a  represent  the p a r t i c l e s  a t  the  

sun immediately following acce lera t ion .  

g r e a t  increase  was observed a t  the  time of t h e  l a r g e  magnetic storm some 50 hours 

a f t e r  t he  primary event.  It w a s  almost an order  of magnitude increase  i n  the  

low energy p a r t i c l e s  as seen i n  Figure 12 .  

cu r r ing  event (Figure 13) some 27 days la te r  when the  same s o l a r  region again 

l 

These 

, 

I I n  the  event of 28 September 1961 a 
I 

This w a s  followed by a s m a l l  re- 

I 
1 passed c e n t r a l  meridian. 

It  now appears t h a t  these  recur r ing  events  a r e  a common f e a t u r e  of a c t i v e  

regions.  However, they conta in  predominantly low energy p a r t i c l e s ,  i . e . ,  less 

than -50 Mev w i t h  s t eep ly  f a l l i n g  energy spec t r a ,  and do not  change the p i c t u r e  

i n  terms of  t he  r ad ia t ion  hazards t o  man i n  space. 
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I Consis tent  wi th  these observations a r e  the  s tud ie s  by G U S S ~ ~  of t he  d i s t r i b u -  

t i o n  i n  hel iographic  longi tude of f l a r e s  which produce energe t ic  s o l a r  p a r t i c l e s .  

Guss has found t h a t  flares from a s ingle  loo i n t e r v a l  i n  he l iographic  longi tude 

caused most of the  l a rge  s o l a r  p a r t i c l e  events over the las t  s o l a r  cyc le .  He 

has  in t e rp re t ed  t h i s  t o  ind ica t e  the  exis tence of a cen te r  f o r  t he  formation of 

a c t i v e  regions which pe r s i s t ed  f o r  more than 73 ro t a t ions .  Figure 14 shows the  

he l iographic  longi tudes f o r  f l a r e s  which produced s o l a r  p a r t i c l e  events  between 

1955 and 1962 during the las t  s o l a r  cycle. 

90' produced the l a r g e s t  p a r t i c l e  events of t h a t  cyc le  - the  event of 23 February 

The s e r i e s  of f l a r e s  between 80' and 

1956 and the mul t ip l e  events of Ju ly  1959, November 1960, and Ju ly  1961. The 

remainder of t he  events during the last  s o l a r  cyc le  a l s o  f a l l  i n t o  longi tude 

bands, bu t  no t  so sharp ly  defined. Guss found t h a t  the events  between 240° and 

280°, with one exception, occurred between 20 January 1957 and 23 March 1958, 

i nd ica t ing  the  ex is tence  of an a c t i v e  s i t e  which l a s t ed  f o r  more than a year .  

The events  between 210° and 220' are those of March through September 1960. 

The i n t e r v a l  between 160° and 190° contained events which occurred between 9 August 

1957 and 10 May 1959. The i n t e r v a l  between l l O o  and 140° includes events from 

6 June 1958 t o  22 August 1958 and the two s m a l l  events of 10 September and 28 

September 1961. F ina l ly ,  he observed a dea r th  of a c t i v i t y  i n  the  longi tude 

i n t e r v a l  between 280° and 80°. Thus, a s i n g l e  well-defined longi tude region 

w a s  respons ib le  f o r  most of the  intense p a r t i c l e  events o f / l a s t  s o l a r  cyc le .  
the  

The f a c t  t h a t  t h i s  region can be compressed i n t o  a loo band of longi tude with 

a s u i t a b l e  choice of the  per iod of so l a r  r a d i a t i o n  would i n d i c a t e  t h a t  t h i s  

s i t e  r o t a t e d  a t  constant  r a t e  as  observed through the  v a r i a b l e  r o t a t i o n  of 

t he  photosphere. 
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Several  excel lent  summaries on s o l a r  protons have appeared. These include 

a review of so la r  cosmic ray events by W. R. Webber i n  the AAS-NASA Symposium 

on the Physics of Solar  Flares26 and D. K. Bailey37 i n  the Tenth r epor t  of the  

I n t e r  Union Commission on Solar  and T e r r e s t r i a l  Relat ionships .  



Figure Captions 

1. Reproduction of t r acks  of primary c o s m i c  rays  of Hydrogen - I ron i n  

nuc lear  emulsions. 

2, I n t e g r a l  energy spec t ra  of primary nucleons. 

3. Low energy d i f f e r e n t i a l  energy spectra of primary cosmic ray protons 

i n  time i n t e r v a l  c lose  t o  s o l a r  maximum. 

Time h i s t o r y  of t h ree  i n t e g r a l  energy regions from November 1 2 ,  1960 

event . 
4. 

5. Time h i s t o r y  of t h ree  i n t e g r a l  energy regions from November 15,  1960 

event.  

6. I n t e g r a l  proton spec t ra  a r e  shown as exponent ia ls  i n  r i g i d i t y  a t  selected 

t i m e s  f o r  6 d i f f e r e n t  s o l a r  f l a r e s .  Data po in t s  taken from counter 

a scen t s  a r e  shown a s  s o l i d  symbols; those taken with emulsion a s  open 

symbols. 

Time  h i s t o r y  of t he  i n t e n s i t y  and spectrum of s o l a r  p a r t i c l e s  during t h e  

events  of November 1960, 

techniques and includes r iameter ,  balloon, rocket ,  s a t e l l i t e  and neutron 

monitors , 

The i n t e n s i t i e s  of 87-Mev protons vs t i m e  a f t e r  t h e  type I V  emissions 

dur ing  t h e  f i v e  primary s o l a r  proton events .  

7 .  

The values of Jo a r e  determined by var ious 

8 .  

The shapes of only two 

events ,  those of 28 September 1961 and 23 October 1962, a r e  seen t o  be 

q u a n t i t a t i v e l y  s i m i l a r ,  a s  monitored i n  t h i s  manner. 

9. The d i f f e r e n t i a l  i n t e n s i t i e s  of so la r  protons during t h e  28 September 1961 

event p lo t t ed  aga ins t  time a f t e r  the X-ray bu r s t  a t  the  sun. The data  



10. 

11. 

1 2 .  

Figure Captions (Cont Id) 

are  in te r rupted  when t h e  s a t e l l i t e  passed through t h e  magnetosphere and 

when the delayed inc rease  occurred on 30 September 1961. 

The i n t e n s i t y  vs time p l o t s  f o r  t h e  28  September 1961 (Figure 9) con- 

ver ted  t o  r e l a t i v e  i n t e n s i t y  vs d i s t ance  p l o t s .  The d i s t ance  i s  com- 

puted for each energy component by tak ing  the  product of the  corresponding 

p a r t i c l e  ve loc i ty  and time from t h e  event ;  t he  i n t e n s i t i e s  are  sca led  t o  

g ive  the bes t  f i t  t o  a common propagation curve,  This f i t  occurs over a 

dynamic range i n  energy of a few hundred and a v e l o z i t y  range of 14, and 

over a t i m e  dura t ion  of several  days. 

The source spectra of t h ree  s o l a r  proton events.  The i n t e n s i t i e s  p l o t t e d  

a r e  a r b i t r a r i l y  chosen t o  show t h e  maximum i n t e n s i t i e s  reached a t  t h e  e a r t h ;  

a s  explained i n  the  t e x t  the  re la t ive  sca l ing  of t h e  two sec t ions  of t he  

spectrum of 10 November i s  no t  n e c e s s a r i l y  meaningful. I n  the  case of t h e  

s o l a r  proton events  which t o t a l l y  conform t o  a velocity-dependent behavior,  

such as  those of 28 September 1961 and 23 October 1962, the  source spectrum 

i s  t h e  unique d i f f e r e n t i a l  energy spectrum of the  protons a t  t h e  t i m e  of 

t h e i r  escape from the  sun; i n  each event t h e  source spectrum i s  propor t iona l  

t o  t h a t  shown here  with a cons tan t  which depends i n  an unknown way on t h e  

geometry of propagation. 

Representative proton i n t e n s i t i e s  between 28 September and 7 October, showing 

t h e  delayed i n t e n s i t y  increase  of predominately lower-energy protons on 30 

September 1961. The energy spec t r a  of these  p a r t i c l e s  are r e l a t i v e l y  con- 

s t a n t  with t i m e ,  un l ike  those of the  veloci ty-ordered primary s o l a r  proton 

event ,  and t h e i r  a r r i v a l  t i m e s  are  e s s e n t i a l l y  cons tan t  with energy, 

occurring a t  t h e  t i m e  of a r r i v a l  of t h e  enhanced s o l a r  plasma, two days 

a f t e r  the f l a r e .  



Figure Captions (Cont'd) 

13. The i n t e n s i t y  of protons of energy above 3 Mev between 30 September and 

28 October 1961. The delayed increase  on 30 September i s  superposed on 

t h e  primary solar-proton i n t e n s i t y  decay and t h e  recur ren t  event on 

27 October follows t h e  completely event-free in te rvening  period. 

-- 14. Number of s o l a r  p a r t i c l e  events vs heliographic longi tude  with t h e  

c e n t r a l  meridian during t h e  23 February 1956 event s e t  t o  O o ,  and assuming 

a r o t a t i o n  period of 27.04 days. 

> 30 Mev detec ted  a t  t h e  ear th8  in t eg ra t ed  over t h e  p a r t i c l e  event i s  

The p a r t i c l e  i n t e n s i t y  with k i n e t i c  energy 

x , I > 108 par t ic les /cm2;  F2, I > 5 x IO 6 pa r t i c l e s / cm 2 ; open squares,  - - 
6 2 I < 5 x 10 pa r t i c l e s / cm . A do t  i n  a square s i g n i f i e s  t h a t  t h e r e  was a 

neutron-monitor rate increase ,  i nd ica t ing  the  presence of a s i g n i f i c a n t  

number of p a r t i c l e s  with k i n e t i c  energy g r e a t e r  than about 5000 MeV. Light 

l i n e s  are used t o  sepa ra t e  ind iv idua l  events and heavy l i n e s  t o  sepa ra t e  

ind iv idua l  a c t i v e  regions. 
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TABLE V 

RELATIVE ABUNDANCES OF NUCLEI NORMALIZED 
TO A BASE OF 1.0 FOR OXYGEN 

Element Solar Cosmic Sun Universal Galactic Cos- 
Rays Abundances mic Rays 

2He...0.... 107+14 - ? 150 48 

3Li .000 . -0 .  O o o . o . O O O . . . . .  <<0.001 << 0.001 0.3 

4B-5B. o o o <0.02 <<o . 001 << 0.001 0.8 

6C......... 0.59 - W.07 0.6 0.3 1.8 

< 0.8 - 7 N o  . . . . . . . 0.19 3 . 0 4  0.1 0.2 

80 ......... 1.0 1.0 1.0 1 .o 

gF. <Om03 < 0.1 - <<0.001 << 0.001 

10Ne........ 0.13 - 30.02 1 0 -40 0.30 

11Na........ .............. 0.002 0.001 0.19 

l$Q. 0 0 O.043iOo011 - 0.027 0.042 0.32 

1+1........ . . e . .  0 . . . 0 . . 0 0  0.002 0.002 0.06 

14Si........ 0 . 0 3 ~ . 0 1 1  0.035 0.046 0.12 

0 . 006 0.030 0.28 
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